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ffect of particle asphericity on single-scattering
arameters: comparison between Platonic solids
nd spheres

ing Yang, George W. Kattawar, and Warren J. Wiscombe

The single-scattering properties of the Platonic shapes, namely, the tetrahedron, hexahedron, octahe-
dron, dodecahedron, and icosahedron, are investigated by use of the finite-difference time-domain
method. These Platonic shapes have different extents of asphericity in terms of the ratios of their
volumes �or surface areas� to those of their circumscribed spheres. We present the errors associated with
four types of spherical equivalence that are defined on the basis of �a� the particle’s geometric dimension
�b� equal surface area �A�, �c� equal volume �V�, and �d� equal-volume-to-surface-area ratio �V�A�. Nu-
merical results show that the derivations of the scattering properties of a nonspherical particle from its
spherical counterpart depend on the definition of spherical equivalence. For instance, when the Platonic
and spherical particles have the same geometric dimension, the phase function for a dodecahedron is
more similar than that for an icosahedron to the spherical result even though an icosahedron has more
faces than a dodecahedron. However, when the nonspherical and spherical particles have the same
volume, the phase function of the icosahedral particle essentially converges to the phase function of the
sphere, whereas the result for the dodecahedron is quite different from its spherical counterpart. Fur-
thermore, the present scattering calculation shows that the approximation of a Platonic solid with a
sphere based on V�A leads to larger errors than the spherical equivalence based on either volume or
projected area. © 2004 Optical Society of America

OCIS codes: 010.1110, 010.1310, 290.1090, 290.1310, 290.2200, 290.5850.
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. Introduction

he scattering and absorption properties of non-
pherical particles are fundamentally important to a
umber of science disciplines and many industrial
pplications. The importance of this subject can be
ecognized from the fact that substantial research
fforts from the electromagnetic and optical research
ommunities have been focused on developing vari-
us accurate and approximate methods to tackle the
ifficulty associated with the electromagnetic scatter-
ng by nonspherical particles. These methods were
ecently reviewed by Wriedt,1 Mishchenko et al.,2
ahnert,3 and Liou.4 With these scattering compu-
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ational methods, the optical characteristics of vari-
us nonspherical particles ranging from various
xisymmetric geometries to highly irregular and in-
omogeneous particle morphologies have been inves-
igated. For example, Mugnai and Wiscombe,5

iscombe and Mugnai,6 Barber and Hill,7 Mish-
henko et al.,8 and Schulz et al.9 have investigated the
ptical properties of axially rotational particles �e.g.,
hebyshev particles, spheroids, and finite-length cir-
ular cylinders�; Fuller,10 Mackowski,11 and Mack-
wski and Mishchenko12 have investigated the
ptical properties of spherical clusters; and many oth-
rs �e.g., Liou et al.,13 Videen et al.,14 Sun et al.,15 and
riedt16� have investigated the optical properties as-

ociated with numerous types of particle morphology.
For electromagnetic scattering by a dielectric par-

icle, the particle shape, in addition to the particle
nherent dielectric characteristics �e.g., permittivity�,
argely affects the scattering properties of the parti-
le. According to Barett,17 particle shape, a syn-
nym for particle geometric form in the literature, is
he expression of particle external morphology.
pecifically, particle shape can be qualitatively de-
cribed by use of three morphological features: over-
1 August 2004 � Vol. 43, No. 22 � APPLIED OPTICS 4427
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ll shape, roundness �or smoothness� of corners or
dges, and surface texture. Additionally, the extent
f particle convexity may also be an important mor-
hological parameter. It has been shown that the
ptical properties of particles with smooth and sharp-
dged surfaces �e.g., spheroids and finite circular cyl-
nders�18 are sensibly different. The extent of
sphericity on the overall shape of a nonspherical
article is usually measured quantitatively in terms
f the ratio of the volume �or surface area� of the
article to that of its circumscribed sphere.
Many nonspherical particles in nature have aspect

atios �note that the aspect ratio of a particle is de-
ned as the ratio of its length to width� that are
pproximately equal to unity. This category of non-
pherical particles, usually referred to as quasi-
pherical particles, is often used in various practical
pplications involving the single-scattering proper-
ies of small particles. For example, they are impor-
ant for a correct representation of the effect of small
ce crystals on the radiative properties of ice clouds in

parameterization scheme, as shown by McFar-
uhar et al.19 Note that the scattering properties of
he quasi-spherical particles can be quite different
rom those of perfect spheres �e.g., Refs. 20 and 21�.

The intent of the present study is to understand the
ffect of the asphericity on the scattering character-
stics of the particles that possess sharp edges and

Table 1. Relationships for the Geom

Type
Number of

Faces L�R

Tetrahedron 4 1.63
Cube 6 1.15
Octahedron 8 1.41
Dodecahedron 12 0.71
Icosahedron 20 1.05

aL is the edge length of a Platonic particle, R is the radius of the
urface area, and V is the volume of a Platonic particle.

ig. 1. Geometries of five Platonic shapes that include the tetra-
edron, cube, octahedron, dodecahedron, and icosahedron.
428 APPLIED OPTICS � Vol. 43, No. 22 � 1 August 2004
lanar faces. Specifically, we investigate a family of
onvex shapes known as Platonic solids consisting of
he tetrahedron, cube, octahedron, dodecahedron,
nd icosahedron, all of which have different extents of
sphericity specified in terms of the ratios of the par-
icle volumes to those of the spheres that may be
ircumscribed around or inscribed within the parti-
les. These Platonic particle shapes all have an as-
ect ratio of unity defined with respect to their
ircumscribed spheres, and they approach a sphere in
n ordered manner. Thus the Platonic shapes are
uite ideal for studying the general features regard-
ng the asphericity effect on scattering properties.
n the present study the finite-difference time-
omain �FDTD� method pioneered by Yee22 is used to
alculate the single-scattering parameters of the Pla-
onic particles. This paper is organized as follows.
he geometrical shapes of the Platonic solids are de-
cribed in Section 2. In Section 3 we briefly outline
he method used for the present light-scattering cal-
ulation. The optical properties of the Platonic sol-
ds as compared with those of spheres are also
iscussed in Section 3. Finally, the conclusions of
his study are given in Section 4.

. Geometric Shapes of Platonic Solids

o study the effect of particle morphology on particle
ptical properties, we consider several polyhedral ge-
metries for light-scattering calculations. Specifi-
ally, we consider the well-known Platonic solids
also known as regular polyhedrons�, which usually
eans five geometric shapes: the tetrahedron, cube

or hexahedron�, octahedron, dodecahedron, and
cosahedron.23–26 Figure 1 shows the geometries of
he five Platonic solids. The numbers of the faces for
he tetrahedron, cube, octahedron, dodecahedron,
nd icosahedron are 4, 6, 8, 12, and 20, respectively.
he faces of a Platonic solid are equilateral polygons
ith the same number of sides. Note that the num-
er of faces, the number of vertices, and the number
f edges of a polyhedron satisfy the famous Euler’s
heorem.27

The five Platonic solids have quite different extents
f asphericity measured quantitatively in terms of
he ratios of either surface areas or volumes of these
onspherical geometries to those of their circum-
cribed spheres. Table 1 lists the ratios of the edge
engths �L� of the nonspherical Platonic solids to the
orresponding circumscribed spherical radii �R�, the

Parameters for Platonic Particlesa

r�R A��4�R2� V��4�R3�3�

0.33 0.37 0.12
0.58 0.64 0.37
0.58 0.55 0.32
0.79 0.84 0.66
0.79 0.76 0.61

umscribed sphere, r is the radius of the inscribed sphere, A is the
etric

circ
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atios of the radii of the corresponding inscribed
pheres �r� to those of the circumscribed spheres, the
atios of the surface areas �A� of the Platonic solids to
hose of the circumscribed spheres, and the ratios of
he volumes �V� of the Platonic solids to those of the
ircumscribed spheres. From the surface area ra-
ios or volume ratios listed in Table 1, it is evident
hat the tetrahedral shape among the five Platonic
olids has the maximum asphericity, whereas the
odecahedral shape has the minimum asphericity.
To understand the scattering characteristics of the

latonic solids when compared with their spherical
ounterparts, we consider four types of spherical
quivalence for the nonspherical particles. First, we
efine the circumscribed sphere of a Platonic particle
s its spherical equivalence; i.e., the nonspherical
nd spherical particles have the same geometric di-
ension. Second, we define an equivalent-surface

phere whose radius is given by

Ra � � A�4��1�2 , (1)

here A is the surface area of a Platonic particle.
dditionally, we also define the volume-equivalent
phere whose radius is given by

Rv � �3V�4��1�3 , (2)

here V is the volume of a Platonic particle. Fol-
owing Foot,28 Francis et al.,29 Mitchell and Arnott,30

yser and Yang,31 Fu et al.,32 and Grenfell and War-
en,33 we also define the effective spherical radius for
nonspherical particle as follows:

Reff �
3
4

V
Ap

, (3a)

here Ap is the averaged particle projected area.
or an arbitrary convex particle, it has been proven34

hat Ap equals A�4 under random orientations.
hus, the effective radius defined in Eq. �3a� is the
ame as the following definition:

Reff � 3V�A (3b)

ote that the ratio of the volume to the projected area
s proportional to the mean length of the particles in
he anomalous diffraction theory originally developed
y van de Hulst.35 Because the anomalous diffrac-
ion theory can give some physical insight into pro-
esses associated with light scattering by a large
ielectric particle when the refractive index is small,
he spherical equivalence defined in terms of the ef-
ective radius in Eq. �3b� is expected to be more suit-
ble than the volume- or surface-area-based
quivalence. For this reason, the spherical equiva-
ence based on Eq. �3a� has been advocated �e.g., Fu et
l.32�. Table 2 lists the ratios of the radii of circum-
cribed spheres to the equivalent radii defined in Eqs.
1�–�3� for the five Platonic shapes. Evidently,
mong the three definitions based on Eqs. �1�–�3a� for
pherical equivalence, the surface-area-based-
quivalent spherical radius �Ra� is the largest,
hereas the effective radius �R � is the smallest.
eff
he minimum of R�Ra �and also R�Rv� ratio values,
hich implies the maximum extent of sphericity for

he nonspherical particles, is observed for the dodeca-
edral geometry. However, the dodecahedron and

cosahedron have the same extent of asphericity if
pecified in terms of R�Reff �note that R�Reff is 1.26
or both geometries�. The same feature is also noted
or the cube and octahedron, i.e., R�Reff � 1.73 for the
wo shapes. Thus the spherical equivalence based
n V�A has a disadvantage in the sense that the
xtent of asphericity cannot be uniquely specified in
ome cases.

. Scattering Properties of Platonic Particles

number of methods have been developed for calcu-
ating the scattering properties of nonspherical par-
icles, among which the T-matrix method,16,36,37 the
iscrete dipole approximation,38,39 and the FDTD38,39

ethod40–43 are the most widely used. In this study
e use the FDTD method to compute the single-

cattering properties of the Platonic particles. The
DTD method is flexible in dealing with an arbitrary
onspherical particle morphology in the sense that
he representation of a scatterer in this method is
traightforward, by assignment of proper permittivi-
ies over grid points. The basic principle of this
ethod is to compute the near field via a finite-

ifference analog of two time-dependent Maxwell’s
url equations given by

� � H �
�

c
�E
�t

, (4a)

� � E � �
�

c
�H
�t

, (4b)

here E and H are electric and magnetic fields,
espectively, and ε and � are permittivity and per-
eability, respectively. To implement the finite-

ifference computation, we use the perfectly matched
ayer boundary condition developed by Berenger44 to
runcate the spatial domain. The near field ob-
ained in the time domain, which is directly computed
rom a finite-difference form of the time-dependent

axwell equations, can be transformed into its far-
eld counterpart via the Fourier transform. Fur-
hermore, the near field can be transformed into the
ar field via an exact electrodynamic relationship.

Table 2. Ratios of R to Ra, Rv, and Reff
a

Type R�Ra R�Rv R�Reff

Tetrahedron 1.65 2.01 3.00
Cube 1.25 1.40 1.73
Octahedron 1.35 1.46 1.73
Dodecahedron 1.09 1.15 1.26
Icosahedron 1.15 1.18 1.26

aR is the radius of the circumscribed sphere; Ra is the radius of
he equivalent-surface-area sphere; Rv is the radius of the
quivalent-volume sphere; and Reff � 3V�A in which V is the
olume and A is the surface area of a given polyhedron.
1 August 2004 � Vol. 43, No. 22 � APPLIED OPTICS 4429
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Fig. 3. Same as Fig. 2 except for P33�P11, 	P43�P11, and P44�P11.

4

he details of the FDTD technique for an application
o the light-scattering computation can be found in
he literature �e.g., Refs. 40–43�. The scattering
hase matrix of a nonspherical particle depends on
he orientation of the particle relative to the incident
eam direction, the scattering angle, and the azi-
uthal angle of the scattering plane on which the

cattered field is observed. For simplicity, we as-
ume the Platonic particles are randomly orientated
n space. Under this condition, the phase matrix is
ndependent of the azimuthal angle of the scattering
lane. In this study we define the phase matrix fol-
owing Bohren and Huffman.45

Figure 2 shows the phase function P11, the degree
f linear polarization that is given by 	P12�P11, and
he ratio of P22�P11 for the five Platonic shapes, which
re compared with the results for the circumscribed
pheres. The size parameter x � 10 in Fig. 2 is
efined with respect to the radius of the circum-
cribed sphere, that is, 2�R�
 � 10. The wave-
ength used in the scattering calculation is 0.6328
m, and the refractive index is assumed to be that of

ce at this wavelength, given by m � 1.3085 � i1.09 �
0	8 from the data compiled by Warren.46 For the
hase function, the spherical result displays pro-
ounced oscillations, particularly, for scattering an-
les ranging from 120° to 180°. The phase function
or the tetrahedral shape is quite featureless and
ssentially flat near backscattering directions. Un-
ike the phase function for the tetrahedron, the phase
unctions for the other four types of the Platonic
hape also show some oscillations. The phase func-
ions for the hexahedron and octahedron are quite
imilar, although the result for the former is closer to
hat of the sphere around the 60° scattering angle.
he phase function for the dodecahedron is similar to

hat of the sphere because the dodecahedron among
he five shapes has the maximum sphericity. The
esults for 	P12�P11 also show that the results for
onspherical particles approach their spherical coun-
erparts when the sphericity of the Plantonic parti-
430 APPLIED OPTICS � Vol. 43, No. 22 � 1 August 2004
les increases in the order of the tetrahedron,
exahedron, octahedron, icosahedron, and dodecahe-
ron. The quantity P22�P11 is indicative of the as-
hericity of a particle45,47 because this parameter is
nity for a sphere. Evidently, the results for the five
latonic shapes indicate the nonspherical effect. It

s noteworthy that the values of P22�P11 for the do-
ecahedron and icosahedron are of the same order,
lthough the phase function and 	P12�P11 for the
ormer are much closer to their spherical counter-
arts. The quantity �1 	 P22�P11� is sometimes
alled the depolarization ratio.45 From the compar-
son between the nonspherical and the spherical re-
ults shown in Fig. 2, it is evident that the
epolarization ratio is more sensitive than the degree
f linear polarization to the particle nonsphericity.
specially, the values of P22�P11 at large scattering
ngles are quite sensible to particle nonsphericity.
urthermore, the extent of asphericity for the five
latonic particles can be ranked in the order of the
etrahedron, octahedron, hexahedron, icosahedron,
nd dodecahedron. This is consistent with the as-
hericity rank illustrated by the numbers listed in
able 1. To illustrate this point even further, we
how the other elements of the phase matrix in Fig. 3,
amely, P33�P11, 	P43�P11, and P44�P11. We see
ere that, even for the dodecahedron whose phase
unction agrees well with that of the sphere, there are
arge differences when these other elements are com-
ared. It should be noted that these phase-matrix
lements are sensitive to the phase of the fields and
ot just their moduli.
Figure 4 shows the phase function of an ice sphere
ith a size parameter of x � 5 at a wavelength of
.6328 �m. Also shown in Fig. 4 are the phase func-
ions of the five Platonic shapes with the same radius,
rojected area, volume, and V�A �the first, second,
hird, and fourth columns, respectively, in Fig. 4� as
hose for the sphere. Because the orientation-
veraged projected area of a convex shape is one
ourth of the particle surface area under the random
ig. 2. Phase function, degree of linear polarization �	P12�P11�,
nd P22�P11 for the Platonic shapes and the corresponding circum-
cribed spheres �i.e., the spheres and the Platonic shapes have the
ame geometric dimension� at a wavelength of 0.6328 �m. The
articles are assumed to be ice with a refractive index of m �
.3085 � i1.09 � 10	8.
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rientation condition, the projected-area-based
quivalence is the same as the surface-area-based
quivalence. The four types of nonspherical–
pherical equivalence in Fig. 4 are hereafter referred
o as R-based equivalence, A-based equivalence,
-based equivalence, and V�A-based equivalence �the
rst, second, third, and fourth columns, respectively,

n Fig. 4�. The results shown in the first column of
ig. 4 indicate that the forward-scattering peaks for

he tetrahedron, hexahedron, and octahedron are
ubstantially lower than those for the sphere. Be-
ause the forward-scattered peak is due primarily to
iffraction, we should expect the largest deviation to
ccur for those particles whose projected area devi-
tes the greatest amount from their spherical coun-
erparts. This is especially noticeable in the case of
he tetrahedron because a tetrahedron has a much
maller projected area than its circumscribed sphere
oes. When the dimensions of the nonspherical par-
icles and the sphere are the same, the phase function
or the dodecahedron is quite similar to that for the
phere. This is because the dodecahedron, among
he five Platonic shapes, has the minimum deviation
rom asphericity. The phase functions for the other
our Platonic shapes are quite different from those
ssociated with their circumscribed spheres. The
econd and third columns in Fig. 4 correspond to the
ases for the surface-area-based and volume-based
quivalences, respectively. When the surface area
r volume of the nonspherical particles are defined to
e the same as that of the sphere, the forward-

ig. 4. Phase function of an ice sphere with a size parameter of
� 5. The wavelength and refractive index are the same as those

n Fig. 2. Also shown are the phase functions of the five Platonic
hapes with the same radius �the first column�, projected area �the
econd column�, volume �the third column�, and V�A �the fourth
olumn� as those for the sphere.
cattering peaks of the phase functions for the Pla-
onic shapes are quite similar to their spherical
ounterparts. An interesting feature to note is that
he icosahedron has the minimum extent of asphe-
icity for the light-scattering computation if the non-
pherical and spherical particles have the same
olume or surface area. The phase function for the
cosahedron essentially converges to the spherical re-
ult when the volumes for the two geometric shapes
re equal. This feature well illustrates the impor-
ance of how a spherical equivalence is defined. The
ourth column in Fig. 4 is the case in which the Pla-
onic particles and the sphere have the same V�A.
vidently, the spherical equivalence based on the
�A is less accurate than either the surface-area-
ased or the volume-based spherical equivalence.
lthough the V�A-based spherical approximation has
een advocated in practice, Fig. 4 shows that the
olume-based spherical equivalence is the most suit-
ble in the case of small size parameters. It should
e pointed out that the present V�A-based spherical
quivalence is different from that suggested by Gren-
ell and Warren.33 By use of Eq. �3a� or �3b�, in this
tudy a nonspherical particle is approximated by a
ingle sphere. In contrast, in Grenfell and Warren’s
pproach, a population of polydisperse nonspherical
articles is involved, and an individual nonspherical
article is replaced by a number of spheres. The
pherical equivalence suggested by Grenfell and
arren33 provides an effective alternative to deal
ith particle asphericity in the light-scattering com-
utation as applied to atmospheric radiative transfer
imulation, particularly, flux computation.
Figure 5 is the same as Fig. 4, except for a wave-

ength of 11 �m. The refractive index of ice at this
avelength is 1.0925 � i0.248. It should be noted

hat ice is strongly absorptive at this wavelength be-
ause the imaginary part of the refractive index is
uite large. Additionally, the 11-�m wavelength for
ce is within the Christiansen band48,49 in which the
xtinction of an ice particle is minimum because the
eal part of the refractive index is close to 1. The
verall features shown in Fig. 5 are similar to those in
ig. 4; namely, the dodecahedral particle has the
inimum extent of asphericity if the Platonic parti-

les and the sphere have the same dimension,
hereas the minimum nonspherical effect is noted

or the icosahedron if the volume or surface area is
onserved. In the case involving strong absorption,
n interesting point to note is that the radius-based
pherical equivalence overestimates the forward-
cattering peak of the phase function, whereas the
cattering peak in the forward direction is underes-
imated in the spherical equivalence based on V�A, as
s evident from results shown in the first and fourth
olumns in Fig. 5.

In that many aerosols have a higher refractive in-
ex �both real and imaginary parts� than ice at a
isible wavelength, we performed a calculation sim-
lar to the results presented in Fig. 4 except the re-
ractive index was taken as m � 1.53 � i8 � 10	3 �see

ishchenko et al.50� for a wavelength of 0.55 �m; the
1 August 2004 � Vol. 43, No. 22 � APPLIED OPTICS 4431
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ize parameter was kept the same, namely, x � 5.
he results are shown in Fig. 6, and, if one compares

hese results with those for ice shown in Fig. 4, one
an see that they are in complete qualitative agree-
ent with them.

ig. 5. Same as Fig. 4 except for a wavelength of 11 �m. The
efractive index of ice at this wavelength is 1.0925 � i0.248.

ig. 6. Same as Fig. 4 except the particles are assumed to be
erosols with a refractive index m � 1.53 � i8 � 10	3 for a
avelength of 0.55 �m; the size parameter was kept the same,
amely, x � 5.
432 APPLIED OPTICS � Vol. 43, No. 22 � 1 August 2004
Table 3 lists the extinction efficiencies and single-
cattering albedos associated with the phase func-
ions shown in Figs. 4 and 5. Evidently, the
xtinction efficiencies �i.e., the ratio of the extinction
ross section to the particle projected area� and
ingle-scattering albedos for spheres and the Platonic
hapes are different, depending on a specific spheri-
al equivalence. In Figs. 4 and 5 it is shown that the
odecahedron and the spheres have similar phase
unctions if the dimensions of these two types of par-
icle are the same. However, according to the num-
ers listed in Table 3, the relative differences of the
xtinction efficiencies of the dodecahedral and spher-
cal particles are 12.5% and 14.8% at 0.6328- and
1-�m wavelengths, respectively. Note that the
rojected areas of the Platonic solids are smaller than
hose of their circumscribed spheres. If the differ-
nces of the projected areas are accounted for, the
ifference of the extinction cross sections of a Platonic
nd a sphere is given by

Difference �

Qext, PlatonicA��4�R2� � Qext,sphere�

Qext,sphere
, (5)

here Qext,Platonic and Qext,sphere are the extinction
fficiencies for the Platonic solids and spheres, re-
pectively. From Eq. �5� and the area ratio given in
able 1, the preceding two relative errors �12.5% and
4.8%� reduce to 	5.8% and 	3.9% for the differences
etween the extinction cross sections of the dodeca-
edrons and the corresponding circumscribed
pheres. Similarly, in the case for the icosahedrons
hat have the same volumes as spheres, the relative
ifferences for the extinction efficiencies are 	8.2%
nd 	6.6% for the cases listed in Table 3 for 0.6328-
nd 11-�m wavelengths, respectively. However, the
orresponding relative differences for the extinction
ross sections are 	5.2% and 	3.6%. Therefore it
an be misleading to compare the extinction �or scat-
ering� efficiencies instead of the extinction �or scat-
ering� cross sections for nonspherical and spherical
articles. An important point to note is that what is
sed in radiative transfer calculations is the extinc-
ion and scattering cross sections rather than effi-
iencies.

. Conclusions

o understand the asphericity effect of nonspherical
articles on their optical properties, we have com-
uted the single-scattering parameters including the
hase matrix, extinction efficiency, and single-
cattering albedo for the well-known Platonic geom-
tries for cases involving both negligible and strong
bsorptions. The size parameters involved in this
tudy are in the resonant region that excludes the
pplicability of the commonly used geometric-optics
ethod. Thus we use the FDTD method for the

resent light-scattering computations. The optical
roperties of these nonspherical particles are com-
ared with four types of spherical counterpart that
re based on equivalent geometric dimension, volume
V�, surface area �A�, and V�A. Numerical results
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how that all the spherical approximations lead to
ronounced errors �particularly, at a visible wave-
ength� for the first three Platonic geometries �i.e.,
etrahedron, hexahedron, and octahedron� due to the
ubstantial extent of asphericity in these cases.
mong the four spherical approximations, the spher-

cal equivalence based on volume corresponds to min-
mum errors. The comparison of phase functions for
he spherical and nonspherical particles is quite in-
eresting in the cases of the dodecahedron and icosa-
edron. Although an icosahedron has more faces
han a dodecahedron, the extent of asphericity for the
ormer is more substantial than the case of the latter
f the spherical equivalence is specified with respect
o particle linear dimension �or diameter�. In con-
rast, the reverse situation is true if the spherical
quivalence is defined according to the volume of the
latonic particles. In other words, the extent of as-
hericity for a particle really depends on the defini-
ion of a specific spherical equivalence. The
pherical approximation based on V�A �or projected
rea� does not lead to minimum errors, as compared
ith the other three types of spherical equivalence.
dditionally, the spherical equivalence based on V�A
annot uniquely specify the extent of asphericity be-
ause this ratio is the same, both for a dodecahedron
nd an icosahedron if they have the same circum-
cribed diameter. In this study the spherical equiv-
lence based on V�A is the approximation of a
onspherical particle with a single sphere. This
�A-based spherical approximation is different from

hat suggested by Grenfell and Warren who replaced
nonspherical particle by using a number of spheres

n computing the optical properties of a population of
olydisperse nonspherical particles. Grenfell and

Table 3. Extinction Efficiencies and Single-Scattering Albed

Shape Equivalence




Extinction
Efficiency

Sphere 3.36 � 100

Tetrahedron R-based equivalence 5.73 � 10	1

A-based equivalence 1.59 � 100

V-based equivalence 2.04 � 100

V�A-based equivalence 2.35 � 100

Hexahedron R-based equivalence 1.62 � 100

A-based equivalence 2.29 � 100

V-based equivalence 2.54 � 100

V�A-based equivalence 2.98 � 100

Octahedron R-based equivalence 1.56 � 100

A-based equivalence 2.44 � 100

V-based equivalence 2.68 � 100

V�A-based equivalence 3.02 � 100

Dodecahedron R-based equivalence 3.78 � 100

A-based equivalence 4.03 � 100

V-based equivalence 4.22 � 100

V�A-based equivalence 4.35 � 100

Icosahedron R-based equivalence 2.54 � 100

A-based equivalence 3.00 � 100

V-based equivalence 3.09 � 100

V�A-based equivalence 3.25 � 100
arren’s approach is a quite effective alternative in
omputing the bulk optical properties of a polydis-
erse system of nonspherical particles, as applied to
he simulation of radiative transfer �flux computa-
ion, in particular� in the atmosphere. Further-
ore, in this study we also show that it can be quite
isleading to compare the extinction �or absorption�

fficiencies rather than cross sections for a nonspheri-
al particle and a spherical particle because they may
ave different cross sections projected on a plane nor-
al to the incident direction. The present study is

imited to small size parameters. It will be interest-
ng to investigate these features associated with par-
icle asphericity for size parameters in the regime of
eometric optics.
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